
highlighted topics

Physiology of Aging
Invited Review: Aging and sarcopenia

Timothy J. Doherty
Department of Physical Medicine and Rehabilitation and The Canadian Centre for Activity
and Aging, The Lawson Health Research Institute and St. Joseph’s Health Centre,
The University of Western Ontario, London, Ontario, Canada N6A 1Y6

Doherty, Timothy J. Invited Review: Aging and sarcopenia. J Appl
Physiol 95: 1717–1727, 2003;10.1152/japplphysiol.00347.2003.—Aging
is associated with progressive loss of neuromuscular function that often
leads to progressive disability and loss of independence. The term sar-
copenia is now commonly used to describe the loss of skeletal muscle
mass and strength that occurs in concert with biological aging. By the
seventh and eighth decade of life, maximal voluntary contractile
strength is decreased, on average, by 20–40% for both men and women
in proximal and distal muscles. Although age-associated decreases in
strength per unit muscle mass, or muscle quality, may play a role, the
majority of strength loss can be accounted for by decreased muscle mass.
Multiple factors lead to the development of sarcopenia and the associated
impact on function. Loss of skeletal muscle fibers secondary to decreased
numbers of motoneurons appears to be a major contributing influence,
but other factors, including decreased physical activity, altered hormonal
status, decreased total caloric and protein intake, inflammatory media-
tors, and factors leading to altered protein synthesis, must also be
considered. The prevalence of sarcopenia, which may be as high as 30%
for those �60 yr, will increase as the percentage of the very old continues
to grow in our populations. The link between sarcopenia and disability
among elderly men and women highlights the need for continued re-
search into the development of the most effective interventions to pre-
vent or at least partially reverse sarcopenia, including the role of resis-
tance exercise and other novel pharmacological and nutritional interven-
tions.
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IT IS WELL ESTABLISHED THAT the human aging process,
from maturity to senescence, is associated with a sig-
nificant decline in neuromuscular function and perfor-
mance (34, 51, 109, 128). Characteristic of this decline
is the inevitable reduction in skeletal muscle mass and
associated loss of strength that occurs even in the
healthy elderly. Rosenberg (110) first coined the term
Sarcopenia, from the Greek, which literally means
poverty of flesh, to describe age-associated loss of skel-
etal muscle mass. Sarcopenia is now generally used to
describe age-related changes that occur within skeletal
muscle and thus encompasses the effects of altered
central and peripheral nervous system innervation,
altered hormonal status, inflammatory effects, and al-
tered caloric and protein intake. These multiple factors
all contribute to sarcopenia and to the characteristic
skeletal muscle atrophy and weakness, both of which

are considered major contributing factors to the loss of
functional mobility, independence, and frailty present
in many older adults (111, 113). As our population
ages, it is clear that we require greater understanding
of the underlying mechanisms leading to sarcopenia.
Only then can we begin to develop effective targeted
interventions to prevent disability and optimize inde-
pendence in older men and women. This review will
examine sarcopenia from the context of age-related
losses of muscle mass and strength, potential etiologi-
cal factors, and its epidemiology. In particular, the role
of motoneuron loss and its impact on muscle fiber
numbers and muscle mass will be examined. Interven-
tions to reverse or counter sarcopenia, including resis-
tance training, are briefly examined.

AGE-RELATED LOSS OF STRENGTH

Loss of skeletal muscle strength is a commonly rec-
ognized consequence of aging. Age-related decline in
strength has been well established with multiple cross-
sectional studies of limb muscles tested under isomet-
ric and dynamic conditions, most often comparing
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groups of healthy young, middle-aged, and older men
and women (34, 103, 128). The knee extensors, because
of their functional importance, ease of testing, and
presence of comparative histological data, have been
the most frequently examined.

As outlined in Table 1, multiple studies have com-
pared knee extensor strength in groups of young and
healthy older subjects in their seventh and eighth
decades. The average reported age-related decreases in
strength are on the order of 20–40% (71, 93, 94, 140,
141). Even greater losses (50% or more) have been
reported for those in their ninth decade and beyond
(93, 94). In general, similar declines in strength have
been reported for proximal and distal limb muscles,
including the ankle plantar and dorsiflexors, elbow
flexors and extensors, and hand grip (6, 25, 26, 35, 43,
62, 84, 131). Relative losses appear similar for men and
women; however, because men typically start from
higher baseline values, their absolute losses of
strength are greater. In concert with age-related slow-
ing of electrically evoked muscle contractile properties
(18, 26, 32, 35, 69, 95, 129), some reports have shown
more significant losses of strength with isokinetic test-
ing at higher angular velocities (25, 71, 97). One im-
portant exception to these observations is the consis-
tent finding of relative preservation of strength under
eccentric testing conditions (104, 130). It has been
postulated that this may be related to slower contrac-
tile properties and increased or altered connective tis-
sue content and muscle stiffness in older adults.

Although it has been well established that resistance
training interventions can partially reverse losses of
strength in even the very old (42, 46, 103, 128), the
extent to which lifelong activity patterns and training
can prevent age-related declines in strength has not

been prospectively examined. However, Klitgaard and
coworkers (70), in a cross-sectional study, compared
elderly men (mean age 69 yr) who had either trained
with running, swimming, or strength training regu-
larly for between 12 and 17 yr with young and elderly
sedentary controls. Compared with the young controls,
they reported that strength declines in the sedentary
elderly group for maximal isometric torque for the knee
extensors (44%) and elbow flexors (32%). However,
although the older swimmers and runners exhibited
similar declines in strength as the sedentary elderly,
the strength-trained elderly men had maximal isomet-
ric strength and muscle cross-sectional areas (CSAs)
similar to the young controls. These results are clearly
limited by the cross-sectional study design but do pro-
vide evidence that, at least in a selected population,
strength losses with aging may be attenuated by resis-
tance exercise.

The rate of strength decline with aging remains
largely unknown. Vandervoort and McComas (131)
used a cross-sectional design whereby they examined
young, middle-aged, and elderly men and women. Max-
imal voluntary and electrically evoked maximal twitch
forces were determined for the ankle plantar flexor and
dorsiflexor muscles. Men were stronger than women at
all ages, and aging was associated with substantial
declines in force for both muscle groups. Strength
losses were relatively similar for men and women, and
these declines were similar for both evoked and volun-
tary contractions. In an attempt to determine the ex-
tent to which reduced central drive may contribute to
decreased volitional strength, the twitch interpolation
technique was used (9). An important finding of this
study, in keeping with the observations for other mus-
cle groups (35, 101), was that most older men and

Table 1. Age-related changes in knee extensor strength

Study Gender Age, decade Testing Condition
% of Young Adult

Strength

Larsson et al. (71) M 7th Isometric 75
Murray et al. (94) M 8–9th Isometric 55
Murray et al. (93) F 8–9th Isometric 63
Young et al. (140) F 8th Isometric 65
Young et al. (141) M 7th Isometric 61
Overend et al. (97) M 7–8th Isometric 76
Ivey et al. (59) M 7–8th Isometric 76

F 7–8th Isometric 75
Poulin et al. (104) M 7–8th Isokinetic (90°/s)

Concentric 68
Eccentric 81
Isokinetic (180°/s)
Concentric 69
Eccentric 98

Vandervoort et al. (130) F 7–8th Isokinetic (90°/s)
Concentric 50
Eccentric 64

Lynch et al. (77) M 8th Isokinetic (30°/s)
Concentric 65
Eccentric 67

F Concentric 69
Eccentric 73

Percentage of young adult strength refers to the percentage of strength remaining in the older group compared with the younger group.
M, male; F, female.
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women were able to maximally activate the lower mo-
toneuron pool for maximal force production. Thus the
reduced volitional strength with aging was predomi-
nately attributed to decreased muscle mass as opposed
to the inability to adequately recruit the available
contractile tissue. From these data, it was established
that ankle strength did not begin to decline until the
sixth decade of life and then proceeded at a rate of
�1.3% per year thereafter.

Longitudinal studies have provided important in-
sights into the rate of strength decline with aging. For
example, Bassey and Harries (6) reported a 3% loss of
grip strength per year for men and 5% for women over
4 yr. These losses were greater than those reflected in
their initial cross-sectional analysis. Alternatively,
Kallman et al. (62), from cross-sectional analysis of 847
subjects from 20 to 100 yr, reported that grip strength
peaked in the fourth decade and then declined in a
curvilinear fashion thereafter, such that by the ninth
decade strength had declined by 37%. Their longitudi-
nal analysis, however, showed that 15% of the subjects
aged 60 yr and over exhibited no strength decline
during an average 9-yr follow-up, suggesting signifi-
cant interindividual variability. Similarly, Rantanen
et al. (106) reported declines in grip strength of �1%/yr
in a large cohort (3,680) of Japanese-American men
with a 27-yr average follow-up. A more significant rate
of decline was present in those older at baseline or with
chronic diseases such as diabetes and arthritis.

A number of studies have longitudinally examined
age-related strength decline in the knee extensors.
Aniansson et al. (2) reported a decline of 3.2%/yr in a
7-yr follow-up of 23 men aged 73–86 yr, whereas Greig
et al. (49) found that strength was essentially un-
changed over 8 yr in a group of men and women aged
79–89 yr. Frontera et al. (44) reexamined the strength
of 9 of 12 men who had taken part in a training study
12 yr earlier. Isokinetic strength losses for the knee
and elbow flexors and extensors ranged from 9% for
elbow extension at 180°/s to 30% for knee extension at
240°/s. These changes were accompanied by significant
reductions in muscle CSA as shown by computerized
tomography scanning. Winegard et al. (136) longitudi-
nally examined 22 men and women from the 69 ini-
tially studied by Vandervoort and McComas (131).
Over the 12-yr follow-up period, significant decreases
of 30% for men and 25% for women were noted for
ankle plantar flexors, whereas less dramatic losses of
9.5 and 3.3% were reported for dorsiflexors. Hughes
and coworkers (56) longitudinally studied a large co-
hort of men and women initially examined cross-sec-
tionally �10 yr earlier. They obtained a 64% response
rate and reexamined the knee flexors and extensors
and elbow dorsiflexors and plantar flexors in 68 women
and 52 men. Rates of decline were similar for men and
women for knee flexors and extensors (11.8–17.6% per
decade). Women, however, demonstrated substantially
lower rates of decline for elbow flexors and extensors
(2% per decade) than men (12% per decade). Although
knee extensor strength was related to total muscle
mass (estimated from 24 urine creatinine collections),

this accounted for only 5% of the observed variance in
strength. This observation is limited by the comparison
of strength in a specific muscle group with an estimate
of total body muscle mass; however, it does point out
the importance of other factors, including neural, met-
abolic, and cellular changes, that may have an impact
on strength decline with aging. In particular, this
study also highlights that there may be differential
effects in men and women with regard to age-related
changes in upper and lower body strength.

Thus it appears that healthy men and women in
their seventh and eighth decades exhibit, on average,
20–40% less strength compared with their younger
counterparts. These losses are even greater (50% or
more) for the very old. In general, similar losses are
present for proximal and distal muscles in the upper
and lower extremities, and men and women experience
similar losses on a relative basis. Longitudinal studies,
with some exceptions, have reported somewhat greater
losses of strength over time (1–3%/year) compared
with cross-sectional studies. The majority of these
studies, however, have examined older populations
over a limited duration of follow-up and thus may not
predict the rate of decline in young or middle-aged
populations.

AGE-RELATED LOSS OF SKELETAL MUSCLE MASS

Age-related declines in strength are directly im-
pacted by, and correlated with, losses of skeletal mus-
cle mass. It has been demonstrated that total muscle
CSA decreases by �40% between the ages of 20 and 60
yr (34, 103, 128). CSAs have been determined for var-
ious limb muscle groups with ultrasound, computed
tomographic scanning, magnetic resonance imaging
(MRI), and direct measurement of whole muscle cross
sections from cadaveric specimens. For example,
Young et al. (140, 141), using ultrasonographic imag-
ing, reported 25–35% reductions in the CSAs of the
quadriceps muscles in older men and women compared
with young controls. Computed tomographic scanning
has shown similar results for the quadriceps muscle
(70, 98), the biceps brachii (70, 108), and triceps brachii
(108) in men. Additionally, highlighting the inaccuracy
of simple anthropometric measures of limb circumfer-
ence, Rice et al. (108) found 27, 45, and 81% more
nonmuscle tissue (fat and connective tissue) for the
arm flexors, arm extensors, and plantar flexors, respec-
tively. Similarly, Overend et al. (98) reported increases
in nonmuscle tissue of 59% for the quadriceps and
127% for the hamstrings. CSA measurements taken
directly from whole muscle obtained postmortem
showed similar average reductions of 40% for subjects
between 20 and 80 yr old (76). The average reduction
was 10% at 50 yr and accelerated thereafter.

The above studies used small sample sizes, mea-
sured the CSA of only one to three muscles, and com-
prised only male subjects. Two recent studies, however,
have overcome many of these limitations. Gallagher et
al. (48) measured arm skeletal muscle mass, leg skel-
etal muscle mass, and total appendicular skeletal mus-
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cle mass (TASM) using dual-energy X-ray absorptiom-
etry (DEXA) in a sample of 148 women and 136 men
between 20 and 90 yr of age. After adjustments for
height, body weight, and age were made, men were
shown to have larger TASM than women. Moreover,
men exhibited larger age-related decreases in TASM
compared with women (14.8 vs. 10.8%). Similarly,
Janssen et al. (61) used whole body magnetic reso-
nance imaging to determine skeletal muscle mass in a
sample of 268 men and 200 women between 18 and 88
yr of age. Again, men had significantly greater skeletal
muscle mass than women with greater losses of skele-
tal muscle mass with aging. The mechanisms leading
to greater losses of muscle mass with aging in men
compared with women are unknown but have been
postulated to relate to hormonal factors, including
growth hormone, insulin-like growth factor, and tes-
tosterone (61). Although greater losses of muscle mass
occur with aging in men, it has been suggested that
sarcopenia may be a greater public health concern for
women since they live longer and generally exhibit
higher rates of disability (113).

AGE-RELATED CHANGES IN MUSCLE QUALITY

The term muscle quality (MQ) refers to strength per
unit CSA or strength per unit muscle mass and is
considered a more meaningful indicator of muscle func-
tion than strength alone (113).

There are significant challenges in setting out to
determine MQ in vivo in humans. There is the obvious
assumption that both the measurements of force and
muscle mass or CSA are valid and accurate. Measure-
ments of maximal voluntary strength, especially of
large proximal or intermediate muscles (e.g., knee flex-
ors and extensors, biceps and triceps, and ankle dorsi-
and plantar flexors) are dependent on multiple factors,
including the need for full central activation, difficul-
ties in ensuring that only the muscles of interest par-
ticipated in force or torque production, and the effects
of pain and other neural inhibitory factors limiting or
modifying central drive. Additionally, there are poten-
tial limitations and errors related to the method used
for determination of muscle mass or CSA. Given these
potential limitations, early studies provided variable
results. For example, Young et al. (140) found no dif-
ference in force/CSA in the knee extensors of older
women in the eighth decade vs. young controls. Alter-
natively, losses in MQ were reported for older men by
a number of investigators (45, 62, 97, 107, 141). The
differing methods for determining muscle mass or CSA
and force measurement may be largely responsible for
the variability in these earlier studies. More recently,
Kent-Braun and Ng (67) reported no age-related im-
pairment in force/CSA for the ankle dorsiflexors. They
had carefully controlled for central activation and used
MRI scanning to accurately quantify the CSA for the
anterior compartment of the leg. Alternatively, Klein
et al. (69) reported that, although the physiological
CSA of the elbow flexors and extensors significantly
declined with age in older men, the force/CSA was

decreased for the flexors, but not extensors. Proposed
mechanisms for this finding included changes in the
architecture of the triceps brachii, increased coactiva-
tion of the biceps, and reduced muscle fiber-specific
tension. The observations of Macaluso et al. (78) have
further supported potential reductions in force/CSA in
older women. They reported decreased force/CSA in
both the knee flexors and extensors of elderly women
in their seventh decade. The decreased force/CSA in
the knee extensors was accompanied by increased co-
activation of the antagonist knee flexors, again sug-
gesting a potential neural mechanism for the de-
creased force/CSA.

Some potential sex differences in MQ with aging
have been demonstrated. For example, in a recent
comprehensive study, Lynch et al. (77) set out to de-
termine differences in MQ between arm and leg mus-
cles across the life span. Reliable measures were used
for both concentric and eccentric strength, and muscle
mass was determined from whole body DEXA scanning
with estimation of arm and leg muscle mass. They
reported that the age-associated losses in arm MQ
were greater for men than for women, whereas leg MQ
declined similarly. Second, arm MQ was higher than
leg MQ across all age groups for men and women;
however, although arm MQ declined at the same rate
as leg MQ for men, the decline in leg MQ was greater
than arm MQ for women. These age-related losses in
MQ are potentially related, among other factors, to
changes in neural drive, altered muscle pennation, and
increases in connective tissue. With regard to this
latter point, Kent-Braun et al. (68) recently reported a
two- to threefold increase in intramuscular noncon-
tractile tissue in the anterolateral compartment mus-
cles. Although similar increases were noted for men
and women, an inverse relationship was found be-
tween physical activity and the extent of noncontrac-
tile tissue in women.

Finally, gender differences in MQ with aging may be
related to altered contractile properties of the muscle
fibers themselves. Frontera et al. (47) examined whole
muscle strength and whole muscle cross-sectional area
(WMCSA) as well as the contractile properties of chem-
ically skinned segments from single fibers of the vastus
lateralis in young men and older men and women.
Strength and WMCSA of the knee extensors were
significantly higher in younger men compared with
older subjects and in older men compared with older
women. The age-related but not the gender-related
differences were eliminated after controlling for
WMCSA. Moreover, muscle fibers expressing the same
myosin heavy chain isoform from young men were
stronger than fibers from older men, and type I and IIA
fibers from older men were stronger than similar fibers
from older women, even after adjustments for size.
These important findings provide direct evidence for
differences in MQ in older men and women. The mech-
anisms underlying such gender-related differences
with aging remain in question. However, hormonal
factors may play a role, as it has been demonstrated
that specific force is similar in men and premenopausal
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women, whereas there was a dramatic decline in spe-
cific force around the time of menopause; the latter,
however, was diminished in women who used hormone
replacement therapy (HRT) (102).

THE EPIDEMIOLOGY OF SARCOPENIA

Age-associated loss of muscle mass appears inevita-
ble and is likely the most significant contributing factor
to the decline in muscle strength (109, 111, 113, 128).
Although all men and women experience some degree
of sarcopenia, this is variable and on a continuum.
However, in a similar fashion to bone mineral density
scores for osteoporosis, it is possible to dichotomize this
continuous process by establishing a lower limit of
normal such as 2 SD below the mean appendicular
muscle mass for healthy young adults. For example,
Baumgartner et al. (7), in the New Mexico Elder Sur-
vey, measured appendicular muscle mass by DEXA in
883 randomly selected elderly Hispanic and white men
and women. Sarcopenia was defined as losses greater
than 2 SD below the mean for young healthy controls.
The prevalence of sarcopenia ranged from 13 to 24% in
persons aged 65 to 70 yr and was over 50% for those
older than 80 yr. In this study, the prevalence was
higher for men over age 75 yr (58%) than for women
(45%). In a similar study, the prevalence based on total
skeletal mass determined by DEXA was 10% for men
and 8% for women between 60 and 69 yr and 40 and
18%, respectively, for men and women over 80 yr (85).
Because these prevalence rates are relative to gender-
specific younger control populations, they suggest
greater declines in muscle mass for men than women.
Iannuzzi-Sucich et al. (58) used DEXA to quantify
appendicular skeletal muscle mass in 195 women aged
64–93 yr and 142 men aged 64–92 yr. They defined
sarcopenia as 2 SD below the muscle mass/height (m)2

for young controls. The overall prevalence of sarcope-
nia so defined was 22.6% in women and 26.8% in men.
These values climbed to 31 and 45%, respectively, for
women and men over 80 yr. Similarly, Janssen et al.
(61) used whole body MRI to examine skeletal muscle
mass and distribution in a large cohort of 468 men and
women from 18 to 88 yr of age. They observed a decline
in body in skeletal muscle mass beginning in the third
decade; however, this did not become substantial until
the end of the fifth decade. An important finding of this
study was that the loss of muscle mass with aging was
greater in the lower body in men and women. This
finding may reflect decreased activity or altered pat-
terns of activity of the lower extremity muscles with
aging and has important implications for functional
mobility and disability.

Although sarcopenia most specifically refers to loss
of skeletal muscle mass, clearly, functional ability is of
the utmost importance to elderly men and women. It
would seem intuitive that a relationship should exist
between muscle mass, strength, and the ability to
carry out functional tasks. This was evident in the New
Mexico study in which sarcopenic women had 3.6 times
higher rates of disability and men had 4.1-fold higher

rates compared with those with greater muscle mass
(7). The use of assistive walking aids and the number of
falls were also higher in these subjects. More recently,
Janssen et al. (60) reported a higher prevalence of more
severe sarcopenia in women compared with men over
60 yr. These researchers found that functional impair-
ment and disability were two times greater in older
men and three times greater in older women.

MECHANISMS UNDERLYING SARCOPENIA

Multiple, interrelated factors contribute to the devel-
opment and progression of sarcopenia (Fig. 1). These
factors, no doubt, contribute in varying degrees to the
age-related losses of muscle mass, strength, MQ, and
the degree of functional impairment and reserve
present in older men and women. It is also probable
that certain underlying mechanisms are of greater
influence than others when considering any specific
age group, gender, or association with comorbid states.

Regardless of any potential age-related impairment
in MQ, loss of muscle mass is the largest contributing
factor to strength decline and associated disability in
older men and women. Histological data, predomi-
nately from needle biopsy sampling, has provided some
insight into the cause of the age-related atrophy. The
majority of these studies have been undertaken on the
vastus lateralis muscle, and the overall findings are
reasonably consistent. That is, the average type II fiber
size is diminished with age, whereas the size of type I
fibers is much less affected (34, 51, 72–74, 76, 109,
128). Although reductions in type II area range from 20
to 50%, type I fiber area losses range from 1 to 25%.
The variability noted in these studies relates to sam-
pling variability, potential sampling bias with muscle
biopsy, and the undoubted inherent variability in both
the older and younger control populations.

Fig. 1. Factors contributing to sarcopenia. This figure summarizes
the influence of multiple factors that lead to age-associated declines
in muscle mass and strength and the subsequent impact on disabil-
ity and loss of independence.
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The above reductions in fiber size, however, are mod-
erate compared with the reductions in muscle mass;
therefore, reductions in muscle fiber number have been
proposed. Lexell et al. (76), using whole muscle cross-
sections from the vastus lateralis muscle obtained
postmortem, reported that, by the ninth decade, �50%
fewer type I and type II fibers were present compared
with muscles from those 20 yr old. The fact that similar
losses of muscle fibers were present for type I and II
fibers stood in contrast to earlier work from samples
obtained with muscle biopsy (71, 72). Further analysis
determined that the CSA of the vastus lateralis, at
least, is mainly determined by the total number of
fibers and, to a lesser extent, by the size or number of
type II fibers (73, 74, 76).

Further to this, in concert with type II atrophy, there
is histochemical evidence of fiber type grouping, fiber
atrophy, and increased coexpression of myosin heavy
chain isoforms in the same fiber, thought consistent
with a progressive denervation and reinnervation pro-
cess secondary to a chronic neuropathic process (1, 36,
96). Given these findings and the previously noted
losses of muscle fibers, it has been suggested that
�-motoneuron loss may be largely responsible for age-
related loss of muscle mass (15, 31–33, 36, 109).

Is there any support for such a hypothesis? Electro-
physiological studies that used either macro electro-
myographic techniques (118) or motor unit number
estimation techniques (30, 33) have demonstrated sub-
stantive losses of whole functioning motor units in
proximal and distal muscles in the upper and lower
extremities (28, 33, 119). These reported losses are on
the order of 50% for the thenar, hypothenar, and bi-
ceps/brachialis muscle groups (15, 16, 31, 35, 115) and
are consistent with anatomic data that has demon-
strated losses of anterior horn cells and ventral root
fibers with aging (31, 35, 64, 65, 86, 125). These find-
ings, taken together with muscle morphological
changes consistent with a chronic neuropathic process,
point toward age-associated losses of motoneurons as
an important contributing factor to reduced muscle
fiber number and muscle mass (3, 17, 34, 35). No
longitudinal studies have examined this process, but
cross-sectional studies would suggest that motoneuron
or motor unit numbers are well maintained until the
seventh decade and then begin to decline precipitously
thereafter (18, 81, 82). Whether the progressive loss of
motor units continues to occur to the same extent into
the eighth and ninth decade has not yet been exam-
ined, especially for larger proximal muscles. If so, as
occurs in the postpolio syndrome, this may be an im-
portant factor leading to progressive atrophy in the
very old as losses of muscle mass become exponential
as progressively larger motor units drop out (33, 83). It
is unknown whether physical activity or hormonal or
genetic factors potentially influence the extent or rate
of motor unit loss.

Loss of muscle mass secondary to muscle fiber loss
and secondarily fiber atrophy appear largely responsi-
ble for sarcopenia. However, other hormonal, meta-
bolic, nutritional, immunologic, and molecular factors

also contribute to sarcopenia. (see Refs. 113 and 132 for
recent reviews). In general, it has been postulated that
with aging there is a withdrawal of, or resistance to,
anabolic factors and potential development of catabolic
influences on skeletal muscle.

The relationship between hormonal mediators and
sarcopenia has been the topic of a number of recent
reviews (11, 63, 88, 91, 114). Serum levels of both
testosterone and the adrenal androgens decline with
age (120–122), and there are epidemiological data sup-
porting the relationship between the fall in testoster-
one and the decline in muscle mass (8), strength (8,
100), and functional status (100). The decline in estro-
gen in women associated with menopause is well rec-
ognized; estrogen may also have anabolic effects on
muscle, possibly as a result of its conversion to testos-
terone (113). Estrogen and testosterone may also in-
hibit the production of IL-1 and IL-6, suggesting that
decreased levels of these hormones may have an indi-
rect catabolic effect on muscle (113).

Testosterone replacement has resulted in increased
muscle mass (92) and strength in hypogonadal popu-
lations (10) and elderly men (116, 127) and increased
strength in elderly women (27). A recent randomized,
placebo-controlled trial reported increased total and
leg lean body mass and leg and arm strength resulting
from 6 mo of testosterone treatment designed to main-
tain serum testosterone within the physiological range
for younger men (40). These changes were accompa-
nied by increased expression of insulin-like growth
factor I (IGF-I), which may point toward it as an
important mechanism for muscle anabolism in older
men. Although these data are promising, further work
is required to determine the ideal dosing regimen,
potential risks with long-term use, and perhaps, most
importantly, the impact on functional outcomes.

Menopause is associated with decreased levels of
circulating 17�-estradiol concentrations in middle-
aged and older women (29). Impaired muscle perfor-
mance has been observed during perimenopause in
concert with rapid and dramatic decreases in ovarian
hormone production (117). This observation suggests
that female sex steroids may play an important role in
regulating muscle performance in middle-aged and
older women. It has been demonstrated that HRT
attenuates the loss of muscle mass that occurs in the
perimenopausal period (29, 102), whereas a recent
study reported that the rate of sarcopenia was as
common in nonobese long-term HRT users as those not
using HRT (66). HRT did not augment the increases in
fat-free mass or leg strength in postmenopausal
women aged 60–72 yr after 11 mo of high-impact
weight-bearing exercise (14), whereas another recent
study reported improvements in lower extremity power
and muscle CSA in response to resistance training and
HRT in a group of younger postmenopausal women
(117). These limited data suggest that HRT, possibly in
concert with resistance exercise, may be most benefi-
cial in the early postmenopausal period; however, more
studies are required to further elucidate the role of
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HRT in relation to improving or maintaining muscle
mass, strength, and function.

Levels of both growth hormone and IGF-I decline
with age, and, based on their known anabolic effects,
there has been interest in their potential therapeutic
benefit to counter sarcopenia (87) (91). In general,
however, studies have shown that growth hormone
administration in pharmacological doses increases
muscle mass but not strength (142). For example, 1 mo
of growth hormone or IGF-I in older women increased
nitrogen balance, protein turnover, and muscle protein
synthesis; however, in response to a 16-wk resistance
training program, growth hormone conferred no
greater gains in strength or protein synthesis (139). It
is believed, given the side effects, cost, and equivocal
results in the literature, that growth hormone cannot
be recommended now as an efficacious intervention for
sarcopenia (139, 142).

It is well recognized that aging is associated with a
decline in food intake; this so-called anorexia of aging
is considered an important factor in the development
and progression of sarcopenia (89–91). Anorexia in-
creases the risk of developing severe muscle wasting,
such as occurs during illness or other potential cata-
bolic states such as after hip fracture. This wasting, if
severe, can lead to cachexia and progressive functional
decline (89, 90).

The multiple complex mechanisms and interactions
leading to decreased food intake with aging have re-
cently been reviewed (91). They include early satiety
secondary to decreased relaxation of the fundus, in-
creased release of cholecystokinin in response to fat
intake, increased leptin levels, which may in part be
due to increase in fat mass with aging, and the effects
of neurotransmitters such as opioids and neuropep-
tides (91). It remains unclear whether this physiologi-
cal anorexia contributes to sarcopenia because the in-
take of protein is below the levels necessary to main-
tain muscle mass or because the intake of essential
dietary nutrients, including creatine (91), is decreased.

Reversal or treatment of age-related anorexia and
associated protein malnutrition is challenging and of-
ten focused on the treatment of coexisting disorders
such as depression, the effects of polypharmacy, and
other potentially reversible causes (91). Oral liquid
caloric and protein supplements have been demon-
strated to be effective in randomized trials in patients
with hip fracture (5, 91). The roles of enteral feeding
and pharmacological agents to reverse anorexia, in-
cluding anabolic steroids, megestrol acetate, growth
hormone, and cannabis derivatives, remain in question
(5, 91).

Eating one-half the recommended dietary allowance
(RDA) of protein of 0.8 g �kg�1 �day�1 has been shown
to lead to significant declines in strength, body cell
mass, and IGF-I in postmenopausal women (23). The
extent to which less substantial reductions in dietary
protein intake contributes to sarcopenia is unknown.
This is an important consideration, however, as it has
been shown that 15% of those over 60 yr eat less than
75% of the RDA (113). Furthermore, the extent to

which the RDA for protein is adequate for elderly men
and women remains in question. Several studies have
suggested that the dietary protein requirements for
older adults are greater than the currently recom-
mended 0.8 g �kg�1 �day�1 (19–22). For example, re-
duced thigh muscle CSA was associated with a diet
containing 0.8 g �kg�1 �day�1 in men and women aged
55–77 yr (22), and gains in fat-free mass with resis-
tance training were greater in men aged 51–69 yr who
consumed a meat-containing diet compared with an
isonitrogenous lacto-ovo vegetarian diet (19). These
differences were unlikely because of increased myofi-
brillar protein synthetic rate, as this was unchanged in
response to progressively higher protein intakes in
older men and women (135).

In addition to declines in anabolic stimuli with ad-
vanced age, there is evidence for an increase in cata-
bolic stimuli. For example, Roubenoff et al. (112) have
reported increased production of IL-6 and IL-1 receptor
antagonist (IL-1ra) by peripheral blood mononuclear
cells in elderly subjects. IL-6 is mildly catabolic,
whereas IL-Ira is a pure cytokine antagonist without
direct catabolic effects (123). In this same study, how-
ever, there was no increase in production of the more
catabolic cytokines TNF-� or IL-1� (112). It has not
been established whether aging is associated with di-
rectly increased cytokine production within muscle;
thus their direct role in sarcopenia remains in question
(113). Again, this may be an important consideration in
the setting of illness or injury superimposed on aging.

The role of altered protein turnover and protein
metabolism in the development of sarcopenia has been
the topic of a number of excellent reviews (99, 105,
124). In general, regardless of the mechanisms, muscle
atrophy occurs when protein breakdown exceeds syn-
thesis. To this end, there is evidence that aging is
associated with a lower fractional synthetic rate of
mixed muscle protein (54, 138), myofibrillar protein

Table 2. Strength gains of the knee extensors after
resistance training interventions in older adults

Study Gender Age, yr
Duration,

wk
Strength Gain,

%

Frontera et al. (46) M 60–72 12 1 RM: 107
MVC: 7

Charette et al. (24) F 64–86 12 1 RM: 28
Grimby et al. (50) M 74–84 8 Con: 10

Ecc: 19
Fiaterone et al. (42) M � F 72–98 10 1 RM: 113
Lexell et al. (75) M � F 70–77 11 1 RM: 152
McCartney et al. (79) M � F 60–80 84 1 RM: 32
Hakkinen et al. (53) M � F X � 70 26 1 RM: 26
Hunter et al. (57) M � F 64–79 12 1 RM: 39
Tracy et al. (126) M � F 65–75 9 1 RM: 28
Yarasheski et al. (137) M � F 76–92 12 1 RM: 41
Hagerman et al. (52) M X � 64 16 1 RM: 50
Hortobagyi et al. (55) M � F 66–83 10 1 RM: 35
Brose et al. (12) M � F X � 68 14 1 RM: 49
Ferrir et al. (41) M 65–81 16 1 RM: 30

1 RM, maximum weight that could be lifted once; MVC, maximal
voluntary contraction; con, concentric contraction; ecc, eccentric con-
traction, X, mean.
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(actin/myosin) (4, 134, 138), and mitochondrial pro-
teins. The reduced basal muscle synthetic rate is asso-
ciated with a reduction in mRNA responsible for myo-
fibrillar protein gene expression (133).

Given these findings and the relationship between
muscle mass and function, there has been obvious
interest in examining the capacity for increased ana-
bolic activity in older adults in association with resis-
tance exercise. For example, Yaresheski et al. (139)
reported increased mixed muscle protein synthesis
(�50%) accompanied by strength gains after 16 wk of
progressive resistance training in older men (65–75
yr). Additionally, a subsequent study reported that 3
mo of resistance training increased the mixed protein
synthetic rate in the vastus lateralis muscles of men
and women between 72 and 92 yr (137). Thus, in
concert with other studies (see below) that have re-
ported increased strength and muscle mass with resis-
tance training, even the very old retain the ability to
upregulate protein synthesis in response to progressive
overload.

Finally, physical inactivity is a significant contribut-
ing factor to age-related sarcopenia. It is well estab-
lished that older men and women who are less physi-
cally active have less skeletal muscle mass and in-
creased prevalence of disability (37–39, 103, 113, 128).
Clearly, it is difficult from cross-sectional studies to
draw inferences regarding causation. However, the re-
sults of numerous studies that have documented that
resistance exercise can reverse sarcopenia provide
sound evidence for the relationship between activity
and skeletal muscle mass and strength (38, 103, 128).
As summarized in Table 2, short-term training studies,
typically of 10- to 12-wk duration, with training two or
three times per week have consistently resulted in
significant strength gains in elderly men and women
(13, 24, 42, 46, 79, 80, 103, 128). Increased strength
and muscle mass with resistance exercise has been
achieved even for the frail elderly �90 yr old (42).
Strength gains were variable across studies, which
reflects multiple factors, including the study popula-
tion, intensity, and duration of the training and the
outcome measured. Typically, increases in muscle CSA
were on the order of 5–10%, suggesting a significant
neural adaptation associated with the reported
strength gains. Nevertheless, increases in muscle fiber
CSA ranging from 5% to over 40% have also been
reported, confirming that strength gains likely result
from a combination of both central (neural) and periph-
eral (muscle mass) factors. Further in depth discussion
of resistance training for sarcopenia is beyond the
scope of this review; however, it should be noted that,
so far, no other intervention has proven to be as effi-
cacious as resistance exercise in reversing sarcopenia.
The optimal exercise modality, duration, and intensity
for healthy older men and women to maintain muscle
mass remain in question; moreover, the benefits of
resistance or other forms of exercise for specific tar-
geted populations of at-risk elderly patients have not
been adequately addressed.

The extent to which countermeasures, including ex-
ercise and nutritional and pharmacological interven-
tions, are able to not only reverse or partially reverse
sarcopenia but improve function and decrease disabil-
ity in the elderly remains to be established. To this
point, although numerous resistance training studies,
for example, have successfully shown gains in muscle
mass and strength, these studies have typically either
not included or were underpowered from the stand-
point of establishing the relationship between such
gains and functional outcomes. Well-designed inter-
vention trials, including meaningful functional out-
come measures, directed toward well-defined popula-
tions, are required to begin to answer these important
questions.
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